

Introduction to the semantics of reciprocals

Wenkai Tay

NUS Syntax/Semantics Reading Group

2 Oct 2025

taywenkai.com

What are reciprocals?

- (1) Romeo and Juliet like each other.
 - = Romeo likes Juliet and Juliet likes Romeo..

What are reciprocals?

- (1) Romeo and Juliet like each other.
 - = Romeo likes Juliet and Juliet likes Romeo..
- (2) *Romeo likes each other.

Why study reciprocals?

Studying reciprocals could help us decide between operator-based vs relational approaches to plural predication.

Outline

1 Reciprocals: operator-based approach

- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

2 Reciprocals: relational approach

- Crash course on dynamic semantics
- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

Reciprocals: operator-based approach

(3) Romeo and Juliet ate a pizza.

Distributive reading: Romeo and Juliet EACH ate a pizza.

Reciprocals: operator-based approach

- (3) Romeo and Juliet ate a pizza.

 Distributive reading: Romeo and Juliet EACH ate a pizza.
- (4) Romeo and Juliet like each other.

 \approx Romeo and Juliet EACH like the other.

(Heim et al. 1991)

Reciprocals: operator-based approach

- (3) Romeo and Juliet ate a pizza.

 Distributive reading: Romeo and Juliet EACH ate a pizza.
- (4) Romeo and Juliet like each other. ≈ Romeo and Juliet EACH like the other.

(Heim et al. 1991)

Is this the best way to capture the meaning of a reciprocal?

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals
- 2 Reciprocals: relational approach
 - Crash course on dynamic semantics
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

(5) $[Romeo and Juliet]^1$ think that they² like $[each other]^3$.

(5) $[Romeo and Juliet]^1$ think that they² like $[each other]^3$.

Narrow scope: Romeo and Juliet think: "We like each other."

(5) $[Romeo and Juliet]^1$ think that they² like $[each other]^3$.

Narrow scope: Romeo and Juliet think: "We like each other."

	u_1	u_2	u_3
s_{1a}	R	R	\mathcal{J}
s_{1b}	R	${\mathcal J}$	R
s_{2a}	\mathcal{J}	R	${\mathcal I}$
s_{2b}	\mathcal{J}	$\mathcal J$	R

(5) $[Romeo and Juliet]^1$ think that they² like $[each other]^3$.

Narrow scope: Romeo and Juliet think: "We like each other."

	u_1	u_2	u_3
s_{1a}	R	R	\mathcal{J}
s_{1b}	R	${\mathcal J}$	R
s_{2a}	$\mathcal J$	R	$\mathcal J$
s_{2b}	\mathcal{J}	\mathcal{J}	R

LF: Romeo and Juliet think that they EACH like the other.

(6) [Romeo and Juliet] 1 think that they 2 like [each other] 3 .

(6) $[Romeo and Juliet]^1$ think that they² like $[each other]^3$.

Wide scope: Romeo thinks: "I like Juliet" and Juliet thinks: "I like Romeo."

(6) [Romeo and Juliet] 1 think that they 2 like [each other] 3 .

Wide scope: Romeo thinks: "I like Juliet" and Juliet thinks: "I like Romeo."

(6) [Romeo and Juliet] 1 think that they 2 like [each other] 3 .

Wide scope: Romeo thinks: "I like Juliet" and Juliet thinks: "I like Romeo."

$$\begin{array}{c|cccc} & u_1 & u_2 & u_3 \\ \hline s_1 & R & R & \mathcal{F} \\ s_2 & \mathcal{F} & \mathcal{F} & R \end{array}$$

LF: Romeo and Juliet EACH think that they like the other.

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals
- 2 Reciprocals: relational approach
 - Crash course on dynamic semantics
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

- (7) House of Commons etiquette requires legislators to address only the speaker of the House and refer to each other indirectly.
- (8) "The captain!" said the pirates, staring at each other in surprise.
 (Dalrymple et al. 1998)

(9) Romeo and Juliet like each other.

(9) Romeo and Juliet like each other.

Option 1: \approx Romeo and Juliet EACH like the other.

(Heim et al. 1991)

(9) Romeo and Juliet like each other.

Option 1: \approx Romeo and Juliet EACH like the other. (Heim et al. 1991)

Option 2: \approx RECIP(Romeo and Juliet, like) (Dalrymple et al. 1998)

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals
- 2 Reciprocals: relational approach
 - Crash course on dynamic semantics
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

(10) 罗密欧 和 朱丽叶 喜欢 彼此。 Luómiōu hé Zhūlìyè xǐhuān bǐcǐ. Romeo and Juliet like BICI 'Romeo and Juliet like each other.'

- (10) 罗密欧 和 朱丽叶 喜欢 彼此。 Luómìōu hé Zhūlìyè xǐhuān <mark>bǐcǐ</mark>. Romeo and Juliet like BICI 'Romeo and Juliet like each other.'
- (11) 罗密欧 和 朱丽叶 互相 喜欢。
 Luómiōu hé Zhūlìyè hùxiāng xǐhuān.
 Romeo and Juliet HUXIANG like
 'Romeo and Juliet like each other.'

- (10) 罗密欧 和 朱丽叶 喜欢 彼此。 Luómìōu hé Zhūlìyè xǐhuān <mark>bǐcǐ</mark>. Romeo and Juliet like BICI 'Romeo and Juliet like each other.'
- (11) 罗密欧 和 朱丽叶 互相 喜欢。
 Luómiōu hé Zhūlìyè hùxiāng xǐhuān.
 Romeo and Juliet HUXIANG like
 'Romeo and Juliet like each other.'
- (12) 罗密欧 和 朱丽叶 互相 喜欢 彼此。
 Luómiōu hé Zhūlìyè hùxiāng xǐhuān bǐcǐ.
 Romeo and Juliet HUXIANG like BICI
 'Romeo and Juliet like each other.'

(13) Romeo and Juliet each like the other.

- (13) Romeo and Juliet each like the other.
- (14) *Romeo and Juliet each like each other.

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

2 Reciprocals: relational approach

- Crash course on dynamic semantics
- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

Reciprocals: relational approach

(15) [Romeo and Juliet]¹ like [each other]²₁.

Reciprocals: relational approach

(15) [Romeo and Juliet]¹ like [each other]²₁.

$u_1 u_2$
$R \oplus J(\cup u_1)$ $Like(u_1, u_2)$ $\cup u_2 = \cup u_1$ $u_2 \neq u_1$

$$\begin{array}{c|cc} & u_1 & u_2 \\ \hline s_1 & R & \mathcal{J} \\ s_2 & \mathcal{J} & R \end{array}$$

Reciprocals: relational approach

(15) [Romeo and Juliet]¹ like [each other]²₁.

$$egin{array}{c|ccc} & u_1 & u_2 \\ \hline s_1 & R & \mathcal{J} \\ s_2 & \mathcal{J} & R \\ \hline \end{array}$$

The material in this section is adapted from Haug and Dalrymple (2020).

Outline

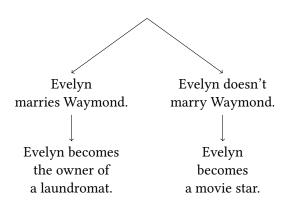
- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals
- 2 Reciprocals: relational approach
 - Crash course on dynamic semantics
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

Dynamic semantics

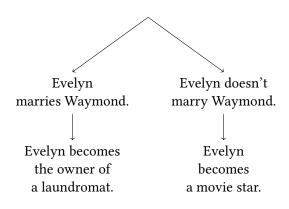
Dynamic semantics

Evelyn marries Waymond.


Dynamic semantics


Evelyn marries Waymond.

Evelyn becomes the owner of a laundromat.



Each sentence takes us to a different possible world.

Each sentence reduces the **context (set)** = the set of possible worlds.

Each sentence reduces the **context (set)** = the set of possible worlds.

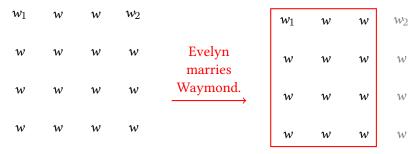
Evelyn marries Waymond.

Each sentence reduces the **context (set)** = the set of possible worlds.

Each sentence reduces the **context (set)** = the set of possible worlds.

A sentence has the potential to change / update the context.

w_1	w	w	w_2
w	w	w	w
w	w	w	w
w	w	w	w


w_1	w	w	w_2	
w	w	w	w	Evelyn
				marries
w	w	w	w	Waymond.
w	w	w	w	

	w_2	w	W	w_1
Evelyn marries	w	w	w	w
Waymond.	w	w	w	w
	w	w	w	w

w_1	w	w	w_2
w	w	w	W
w	w	w	w
w	w	w	W

A sentence is a function that takes us from one context to another.

Sentences introduce discourse referents and conditions on these drefs.

Sentences introduce **discourse referents** and **conditions** on these drefs.

(16) Evelyn marries Waymond.

Sentences introduce **discourse referents** and **conditions** on these drefs.

(16) Evelyn marries Waymond.

Evelyn marries 2 Waymond marries 1

Sentences introduce discourse referents and conditions on these drefs.

(16) Evelyn marries Waymond.

Evelyn marries 2 Waymond marries 1

(17) Evelyn owns a laundromat.

Sentences introduce discourse referents and conditions on these drefs.

(16) Evelyn marries Waymond.

Evelyn marries 2 Waymond marries 1

(17) Evelyn owns a laundromat.

Evelyn marries 2 owns 3

Waymond marries 1

is a laundromat

縈

The contribution of a sentence can be represented as a **discourse** representation structure (DRS).

縈

The contribution of a sentence can be represented as a **discourse** representation structure (DRS).

(18) Evelyn marries Waymond.

縈

The contribution of a sentence can be represented as a **discourse** representation structure (DRS).

(18) Evelyn marries Waymond.

$u_1 \ u_2$
Evelyn (u_1) Waymond (u_2) Marry (u_1,u_2)

The contribution of a sentence can be represented as a **discourse** representation structure (DRS).

(18) Evelyn marries Waymond.

(19) Evelyn owns a laundromat.

The contribution of a sentence can be represented as a **discourse** representation structure (DRS).

(18) Evelyn marries Waymond.

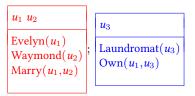
(19) Evelyn owns a laundromat.

DRSs can be combined using **dynamic conjunction** (;).

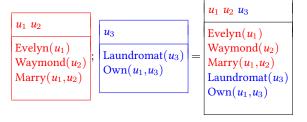


DRSs can be combined using **dynamic conjunction** (;).

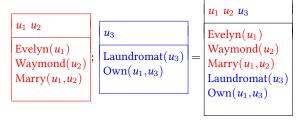
```
u_1 \ u_2
Evelyn(u_1)
Waymond(u_2)
Marry(u_1,u_2)
```



DRSs can be combined using dynamic conjunction (;).

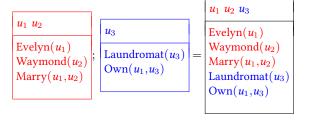


DRSs can be combined using **dynamic conjunction** (;).


DRSs can be combined using **dynamic conjunction** (;).

DRSs can be combined using **dynamic conjunction** (;).

(20) Evelyn marries Waymond. Evelyn owns a laundromat.



Q: Does Evelyn in the second sentence introduce its own dref?

DRSs can handle **cross-sentential anaphora**.

(21) Evelyn₁ marries Waymond. She¹ owns a laundromat.

Reciprocals: relational approach

(22) [Romeo and Juliet] 1 like [each other] 2_1 .

Reciprocals: relational approach

(22) [Romeo and Juliet]¹ like [each other]²₁.

$u_1 u_2$
$R \oplus J(\cup u_1)$ $Like(u_1, u_2)$ $\cup u_2 = \cup u_1$ $u_2 \neq u_1$

$$\begin{array}{c|cc} & u_1 & u_2 \\ \hline s_1 & R & \mathcal{J} \\ s_2 & \mathcal{J} & R \end{array}$$

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

2 Reciprocals: relational approach

- Crash course on dynamic semantics
- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

Reciprocal scope ambiguity

(23) Romeo and Juliet think that they like each other.

Reciprocal scope ambiguity

(23) Romeo and Juliet think that they like each other.

Narrow scope: Romeo and Juliet think: "We like each other."

Reciprocal scope ambiguity

(23) Romeo and Juliet think that they like each other.

Narrow scope: Romeo and Juliet think: "We like each other."

Wide scope: Romeo thinks: "I like Juliet" and Juliet thinks: "I like Romeo."

Excursus: plural anaphora in DRT

(24) Evelyn and Waymond thought they had won.

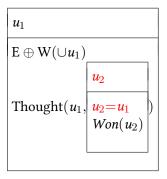
Excursus: plural anaphora in DRT

(24) Evelyn and Waymond thought they had won.

This sentence is ambiguous.

Excursus: plural anaphora in DRT

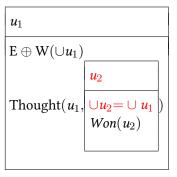
(24) Evelyn and Waymond thought they had won.


This sentence is ambiguous.

- 1 Evelyn and Waymond each thought: "We won."
- **2** Evelyn and Waymond each thought: "I won."

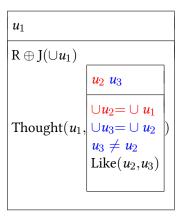
Excursus: plural anaphora in DRT

(25) [Evelyn and Waymond]¹ thought they²₁ had won. Bound reading: Evelyn and Waymond each thought: "I won."



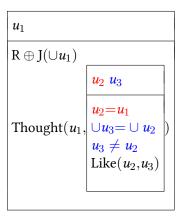
	u_1	u_2
s_1	E	E
s_2	W	W

Excursus: plural anaphora in DRT


(26) [Evelyn and Waymond]¹ thought they²₁ had won. Group identity reading: Evelyn and Waymond each thought: "We won."

Ε	$E \oplus W$
	-
W	$E \oplus W$
	W

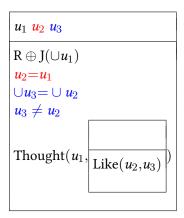
(27) [Romeo and Juliet]¹ think that they² like [each other]³. Narrow scope: Romeo and Juliet think: "We like each other."



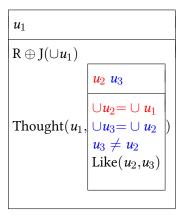
	u_1	u_2	u_3
s_{1a}	R	R	\mathcal{J}
s_{1b}	R	${\mathcal J}$	R
s_{2a}	${\mathcal J}$	R	${\mathcal J}$
s_{2b}	${\mathcal J}$	${\mathcal J}$	R
'	ı		

觻

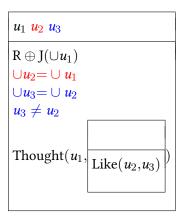
(28) [Romeo and Juliet]¹ think that they² like [each other]³.


Not possible:

	u_1	u_2	u_3
s_1	R	R	\mathcal{J}
s_2	\mathcal{J}	${\mathcal J}$	R


(29) [Romeo and Juliet]¹ think that they² like [each other]³. Wide scope: Romeo thinks: "I like Juliet" and Juliet thinks: "I like Romeo."

	u_1	u_2	u_3
s_1	R	R	\mathcal{J}
s_2	\mathcal{J}	\mathcal{J}	R


(30) [Romeo and Juliet]¹ think that they² like [each other]³. "Crossed reading": Romeo thinks: "Juliet likes me" and Juliet thinks: "Romeo likes me."

	u_1	u_2	u_3
s_1	R	\mathcal{J}	R
s_1 s_2	\mathcal{I}	R	${\mathcal J}$
	'		

(30) [Romeo and Juliet]¹ think that they² like [each other]³. "Crossed reading": Romeo thinks: "Juliet likes me" and Juliet thinks: "Romeo likes me."

	u_1	u_2	u_3
s_1	R	\mathcal{J}	R
s_2	\mathcal{F}	R	\mathcal{J}

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

2 Reciprocals: relational approach

- Crash course on dynamic semantics
- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

Reciprocal strength

- (31) House of Commons etiquette requires legislators to address only the speaker of the House and refer to each other indirectly.
- (32) "The captain!" said the pirates, staring at each other in surprise. (Dalrymple et al. 1998)

Reciprocal strength

- (31) House of Commons etiquette requires legislators to address only the speaker of the House and refer to each other indirectly.
- (32) "The captain!" said the pirates, staring at each other in surprise. (Dalrymple et al. 1998)

 $u_1 \ u_2$ Legislators $(\cup u_1)$ Refer-to (u_1, u_2) $\cup u_2 = \cup u_1$ $u_2 \neq u_1$

 $u_1 \ u_2$ Pirates($\cup u_1$)
Stare-at(u_1, u_2) $\cup u_2 = \cup u_1$ $u_2 \neq u_1$

Outline

- 1 Reciprocals: operator-based approach
 - Reciprocal scope ambiguity
 - Reciprocal strength
 - Multiple reciprocals

2 Reciprocals: relational approach

- Crash course on dynamic semantics
- Reciprocal scope ambiguity
- Reciprocal strength
- Multiple reciprocals

Multiple reciprocals

(33) 罗密欧 和 朱丽叶 互相 喜欢 彼此。 Luómìōu hé Zhūlìyè <mark>hùxiāng</mark> xǐhuān <mark>bǐcǐ</mark>. Romeo and Juliet HUXIANG like BICI 'Romeo and Juliet like each other.'

Multiple reciprocals

(33) 罗密欧 和 朱丽叶 互相 喜欢 彼此。
Luómìōu hé Zhūlìyè hùxiāng xǐhuān bǐcǐ.
Romeo and Juliet HUXIANG like BICI 'Romeo and Juliet like each other.'

$u_1 u_2$
$R \oplus J(\cup u_1)$
$\cup u_2 = \cup u_1$
$u_2 \neq u_1$
$\cup u_2 = \cup u_1$
$u_2 \neq u_1$
$Like(u_1,u_2)$

Summary

Summary

 Studying reciprocals could help us decide between operator-based vs relational approaches to plural predication.

References I

Dalrymple, Mary, Makoto Kanazawa, Yookyung Kim, Sam Mchombo, and Stanley Peters. 1998. Reciprocal expressions and the concept of reciprocity. *Linguistics and Philosophy* 21:159–210.

Haug, Dag Trygve Truslew, and Mary Dalrymple. 2020. Reciprocity: Anaphora, scope, and quantification. *Semantics and Pragmatics* 13:1–62.

Heim, Irene, Howard Lasnik, and Robert May. 1991. Reciprocity and plurality. *Linguistic Inquiry* 22:63–101.